Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
1.
Luminescence ; 39(5): e4751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666358

RESUMO

This study describes the luminous properties of Pb5(PO4)3Br doped with RE3+ (RE = Dy3+, Eu3+ and Tb3+) synthesised using the solid-state method. The synthesised phosphor was characterised using Fourier-transform infrared, X-ray diffraction, scanning electron microscopy and photoluminescence measurements. Dy3+-doped Pb5(PO4)3Br phosphor exhibited blue and yellow emissions at 480 and 573 nm, respectively, on excitation at 388 nm. Eu3+-doped Pb5(PO4)3Br phosphor exhibited orange and red emissions at 591 and 614 nm, respectively, on excitation at λex = 396 nm. Pb5(PO4)3Br:Tb3+ phosphor exhibited the strongest green emission at 547 nm on excitation at λex = 380 nm. Additionally, the effect of the concentration of rare-earth ions on the emission intensity of Pb5(PO4)3Br:RE3+ (RE3+ = Dy3+, Eu3+ and Tb3+) phosphors was investigated.


Assuntos
Európio , Luminescência , Substâncias Luminescentes , Európio/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Térbio/química , Fosfatos/química , Medições Luminescentes , Difração de Raios X , Chumbo/química
2.
Biosens Bioelectron ; 254: 116205, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484411

RESUMO

In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the ß-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 µM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Animais , Fluoroquinolonas , Térbio/química , Carbono/química , Polímeros/química , Reprodutibilidade dos Testes , Pontos Quânticos/química , Corantes Fluorescentes/química
3.
ACS Appl Bio Mater ; 7(4): 2460-2471, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517347

RESUMO

Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb3+) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c. The large quenching of the sensitized Tb3+ emission within the DHN/Phen-Tb3+-NaLC nanotubular sensor arrays caused by the strong binding of the photosensitizers to Cyt c provides an important signal response for the selective detection of Cyt c. This long-lived lanthanide emission response-based sensing strategy can be highly advantageous for the detection of Cyt c in a cellular environment eliminating background fluorescence and scattering signals through time-gated measurements. The DHN containing nanotubular sensor arrays (DHN-NaLC and DHN-Tb3+-NaLC) provide an additional quenching response characterized by a unique spectral valley splitting with quantized quenching dip on the DHN fluorescence emission. This spectral quenching dip resulting from efficient FRET between the protein bound DHN photosensitizer and the heme group of Cyt c serves as an important means for specific detection and quantification of Cyt c in the concentration range of 0-30 µM with a low detection limit of around 20 nM.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Citocromos c , Fármacos Fotossensibilizantes , Térbio/química , Luminescência
4.
Chem Commun (Camb) ; 60(11): 1440-1443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206371

RESUMO

A terbium(III) complex-based time-resolved luminescence probe for selenocysteine can inhibit selenoprotein activity via a selenolate-triggered cleavage reaction of sulfonamide bonds in living cells.


Assuntos
Selenocisteína , Térbio , Térbio/química , Luminescência , Selenoproteínas
5.
Appl Spectrosc ; 78(3): 329-339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38166449

RESUMO

Terbium- and nitrogen-doped carbon quantum dots (Tb,N@CQDs) were greenly created employing microwave synthesis from plum juice with terbium nitrate. The synthesis of Tb,N@CQDs was fast (7 min) with a high quantum yield (35.44%). Tb,N@CQDs were fully characterized using transmission electron microscopy, Zeta potential analysis, fluorescence, and ultraviolet spectroscopy. Omadacycline (OMC) is a broad-spectrum tetracycline that has been recently approved by the United States Food and Drug Act (FDA) in October 2018. OMC is the first oral aminomethylcycline class antibiotic drug that was authorized for the treatment of acute skin structure infections and community-acquired pneumonia. Tb,N@CQDs exhibited emission at 440 nm after excitation at 360 nm, where their fluorescence intensity showed a reduction upon addition of OMC. The experimental parameters were further studied and optimized. The linear range was between 40 and 60 parts per billion (ppb), with (limit of quantitation) equal to 34.78 ppb. The proposed approach was validated for bioanalytical purposes using FDA guidelines and proved to be straightforward, cheap, highly sensitive, and very selective, which can be used in clinical studies. The developed approach proved to be green using some current assessment metrics and was applied successfully for the determination of OMC in human plasma, milk, and pharmaceutical formulations as well as pharmacokinetic study.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Térbio/química , Tetraciclinas , Carbono/química , Nitrogênio
6.
Radiat Res ; 200(6): 569-576, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931289

RESUMO

In this study, the preparation and characterization of copper (Cu) and terbium (Tb) co-doped lithium borate glass using spectroscopic and thermoluminescence techniques are reported. A thermal treatment was introduced to increase the degree of crystallinity. The thermoluminescence glow curve signal of the samples displayed upon exposure to beta radiation was measured and analyzed. It was found that the samples doped with 0.1% of copper and co-doped with 0.3% terbium showed the highest thermoluminescent (TL) signal in response to the irradiated dose. The analyses revealed that the glow curves of the doped samples were composed of nine overlapping glow peaks with activation energies between 0.73 and 2.78 eV. As a whole area under the glow curve, the TL signals displayed a linear dose response in the range from 110 mGy to 55 Gy. The minimum detectible dose of the samples was found to be 10.39 µGy. It was found that peaks 1 and 2 disappear after one day of storage. The rest of the peaks (3-9) remain almost constant up to 74 days of storage.


Assuntos
Cobre , Térbio , Cobre/química , Térbio/química , Dosimetria Termoluminescente/métodos
7.
Nucl Med Biol ; 126-127: 108389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37783103

RESUMO

INTRODUCTION: Four terbium isotopes 149,152,155,161Tb emitting various types of radiation can be used for both diagnostics and therapy. 152Tb emits positrons and is ideal for PET. 155Tb is considered a promising Auger emitter and a diagnostic pair for other terbium therapeutic isotopes. Several methods for the production of 155Tb using charged particle accelerators have been proposed, but they all have significant limitations. The restricted availability of this isotope hinders its medical applications. We have proposed a new method for production of 155Tb, irradiating enriched 155Gd by alpha particles. The possibility of simultaneous production of two isotopes of terbium, 152,155Tb, was also studied for more efficient cyclotron beam use. METHODS: Irradiation of 155Gd enriched targets and 155Gd / 151Eu tandem target with alpha-particles with an energy of 54 MeV was carried out at the U-150 cyclotron at the NRC "Kurchatov Institute". The cross sections of nuclear reactions on enr-155Gd were measured by the stack foil technique, detecting the gamma-radiation of the activation products. The separation of rare earth elements was performed by extraction chromatography with the LN Resin. 155Tb was produced via 155Dy decay. RESULTS: The cross sections for the 155,156Tb and 155,157Dy production were measured by the irradiation of a gadolinium target enriched with the 155Gd isotope with alpha-particles in an energy range of 54 → 33 MeV. The yield of 155Dy on a thick target at 54 MeV was 130 MBq/µAh, which makes it possible to obtain 1 GBq of 155Tb in 11 hour-irradiation with 20 µA beam current. The possibility of simultaneous production of 152,155Tb by irradiation of 155Gd and 151Eu tandem target with medium-energy alpha-particles is implemented. Optimal irradiation energy ranges of alpha -particles as 54 → 42 MeV for 155Tb and 42 → 34 MeV for 152Tb were suggested. Product activity and radionuclidic purity were calculated.


Assuntos
Partículas alfa , Térbio , Térbio/química , Partículas alfa/uso terapêutico , Radioisótopos/química , Elétrons
8.
Environ Sci Pollut Res Int ; 30(48): 106015-106025, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723392

RESUMO

A water-dispersible Tb(III)-based metal organic framework (TBP) was produced by diffusion technique using benzene-1,3,5-tricarboxylic acid (BTC) and pyridine as easily accessible ligands at low cost. The as-synthesized TBP with a crystalline structure and rod-shaped morphology has exhibited thermal stability up to 465 °C. Elemental analysis confirmed the presence of carbon, oxygen, nitrogen, and terbium in the synthesized MOF. TBP was used as a fluorescent probe for detection of danofloxacin (DANO) in an aqueous medium with significant enhancement of fluorescence intensity as compared to various fluoroquinolone antibiotics (levofloxacin (LEVO), ofloxacin (OFLO), norfloxacin (NOR), and ciprofloxacin (CIPRO)) with a low detection limit of 0.45 ng/mL (1.25 nm). The developed method has successfully detected DANO rapidly (i.e., response time = 1 min) with remarkable recovery (97.66-101.96%) and a relative standard deviation (RSD) of less than 2.2%. Additionally, TBP showcased good reusability up to three cycles without any significant performance decline. The in-depth mechanistic studies of the density functional theory (DFT) calculations and mode of action revealed that hydrogen bonding interactions and photo-induced electron transfer (PET) are the major factors for the turn-on enhancement behavior of TBP towards DANO. Thus, the present work provides the quick and precise identification of DANO using a new fluorescent MOF (TBP) synthesized via a unique and facile diffusion technique.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Térbio/química , Ligantes , Fluoroquinolonas , Água/química , Levofloxacino
9.
Chem Commun (Camb) ; 59(54): 8384-8387, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37318770

RESUMO

Interactions of lectins with glycoconjugate-terbium(III) self-assembly complexes lead to sensing through enhanced lanthanide luminescence. This glycan-directed sensing paradigm detects an unlabelled lectin (LecA) associated with pathogen P. aeruginosa in solution, without any bactericidal activity. Further development of these probes could have potential as a diagnostic tool.


Assuntos
Bactérias , Lectinas/química , Luminescência , Glicoconjugados/química , Glicosídeos/química , Ligantes , Bactérias/química , Proteínas de Bactérias/química , Térbio/química
10.
ACS Appl Bio Mater ; 6(6): 2505-2513, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37289471

RESUMO

X-ray-triggered scintillators (Sc) and photosensitizers (Ps) have been developed for X-ray-induced photodynamic therapy (X-PDT) to selectively destruct deep tissue tumors with a low X-ray dose. This study designed terbium (Tb)-rose bengal (RB) coordination nanocrystals (T-RBNs) by a solvothermal treatment, aiming to reduce photon energy dissipation between Tb3+ and RB and thus increase the reactive oxygen species (ROS) production efficiency. T-RBNs synthesized at a molar ratio of [RB]/[Tb] = 3 exhibited a size of 6.8 ± 1.2 nm with a crystalline property. Fourier transform infrared analyses of T-RBNs indicated successful coordination between RB and Tb3+. T-RBNs generated singlet oxygen (1O2) and hydroxyl radicals (•OH) under low-dose X-ray irradiation (0.5 Gy) via scintillating and radiosensitizing pathways. T-RBNs produced ∼8-fold higher ROS amounts than bare RB and ∼3.6-fold higher ROS amounts than inorganic nanoparticle-based controls. T-RBNs did not exhibit severe cytotoxicity up to 2 mg/mL concentration in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells. Furthermore, T-RBNs were efficiently internalized into cultured 4T1-luc cells and induced DNA double strand damage, as evidenced by an immunofluorescence staining assay with phosphorylated γ-H2AX. Ultimately, under 0.5 Gy X-ray irradiation, T-RBNs induced >70% 4T1-luc cell death via simultaneous apoptosis/necrosis pathways. Overall, T-RBNs provided a promising Sc/Ps platform under low-dose X-PDT for advanced cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Humanos , Animais , Camundongos , Feminino , Rosa Bengala/farmacologia , Rosa Bengala/química , Térbio/farmacologia , Térbio/química , Térbio/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Raios X , Nanopartículas/uso terapêutico , Nanopartículas/química
11.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298954

RESUMO

In the present work, we report the synthesis of isomeric heteronuclear terbium(III) and yttrium(III) triple-decker phthalocyaninates [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc] (M = Tb, M* = Y or M = Y, M* = Tb, [(BuO)8Pc]2--octa-n-butoxyphthalocyaninato-ligand, [(15C5)4Pc]2--tetra-15-crown-5-phthalocyaninato-ligand). We show that these complexes undergo solvation-induced switching: the conformers in which both metal centers are in square-antiprismatic environments are stabilized in toluene, whereas in dichloromethane, the metal centers M and M* are in distorted prismatic and antiprismatic environments, respectively. This conclusion follows from the detailed analysis of lanthanide-induced shifts in 1H NMR spectra, which makes it possible to extract the axial component of the magnetic susceptibility tensor χaxTb and to show that this term is particularly sensitive to conformational switching when terbium(III) ion is placed in the switchable "M" site. This result provides a new tool for controlling the magnetic properties of lanthanide complexes with phthalocyanine ligands.


Assuntos
Elementos da Série dos Lantanídeos , Térbio , Térbio/química , Modelos Moleculares , Anisotropia , Ligantes , Elementos da Série dos Lantanídeos/química , Fenômenos Magnéticos
12.
Appl Radiat Isot ; 198: 110840, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156063

RESUMO

The production possibility of 161Tb and 155Tb by irradiating of natural dysprosium with gamma rays obtained by decelerating an electron beam with an energy of 55 MeV has been demonstrated experimentally. The yield of 161Tb was 14.4 × 103 Bq × µA-1 × h-1 × cm2 × gDy2O3-1. Simultaneously, upon irradiation, 155Dy is formed with the yield of 25 × 103 Bq × µA-1 × h-1 × cm2 × gDy2O3-1, which leads to the formation of 1.6 × 103 Bq × µA-1 × h-1 × cm2 × gDy2O3-1 of 155Tb. It has been shown that the isolation of terbium radioisotopes from tens of mg of dysprosium target can be achieved by extraction chromatography, and final separation yield was 39%. The impurity of 160Tb is 7.3% of the 161Tb activity at EOB.


Assuntos
Disprósio , Radioisótopos , Disprósio/química , Térbio/química
13.
Luminescence ; 38(5): 585-599, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929247

RESUMO

Terbium(III)-doped yttrium aluminate perovskite (YAP:xTb3+ ) (x = 0.01-0.08 mol) was synthesized using a simple gel-combustion method. Structural elucidations were performed using X-ray diffraction (XRD) and Rietveld analysis. Fourier-transform infrared spectral studies validated the efficient synthesis of designed doped samples. Transmission electron microscopic images showed the agglomerated irregular dimensions of the synthesized nanocrystalline materials. When excited at 251 nm, a strong emissive line attributed to 5 D4 → 7 F5 electronic transition was observed at 545 nm (green emission). The maximum luminescence was found at the optimized concentration (0.05 mol) of Tb3+ ions; this emission was quenched by dipolar-dipolar (d-d) interactions. Chromaticity (x and y) and correlated colour temperature parameters were obtained by analysing the emission profiles. Finally, the colour coordinates of nanophosphors were closer to the National Television Standards Committee green coordinates, which replicates their potency in the design and architecture of R-G-B-based white LEDs.


Assuntos
Iluminação , Óxidos , Óxidos/química , Térbio/química , Luminescência , Difração de Raios X
14.
Anal Bioanal Chem ; 415(2): 235-244, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380245

RESUMO

Green coffee is coming into vogue as a food that contains remarkable contents of antioxidants like chlorogenic acid (ChA) and induces mild stimulation to the consumer. While most methods for determination of ChA require chromatographic separation prior its quantitation, we present the first probe and a simple, sensitive and validated luminescence method for the determination of chlorogenic acid in green and roasted coffee infusion samples that does not require a chromatographic separation. ChA can remarkably quench the luminescence intensity of the Tb3+ complex with 1-(furan-2-ylmethyl)-4-hydroxy-N-(4-methylpyridin-2-yl)-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxamide (R3) in aqueous solution containing urotropine buffer at a near neutral pH 7.5 at λexc = 315 nm and λem = 545 nm. Under optimal conditions, the quenching of the luminescence intensity is directly proportional to the concentration of ChA in the range of 0.5-30 µg/mL, and the detection limit is 180 ng/mL. From measurements of luminescence decay time, it was determined that both static and dynamic quenching is induced upon coordination of ChA to Tb-R3. The related quenching constants are KS = 5.97∙104 M-1 and KD = 1.05⋅104 M-1. Finally, the method was applied successfully to the determination of ChA in real green and roasted coffee infusion samples and validated by HPLC to yield very closely matching concentrations of both methods. Therefore, this method can serve for a simple quality control of total ChA contents in coffee prior and after roasting.


Assuntos
Ácido Clorogênico , Café , Café/química , Ácido Clorogênico/análise , Térbio/química , Luminescência , Antioxidantes/farmacologia
15.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235033

RESUMO

Double- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of these sandwiches depend on their conformational state, which is determined via the skew angle of the phthalocyanine ligands. Thus, in the present work we report the comprehensive conformational study of substituted terbium(III) and yttrium(III) trisphthalocyaninates in solution depending on the substituents at the periphery of molecules, redox-states and nature of solvents. Conjunction of UV-vis-NIR spectroscopy and quantum-chemical calculations within simplified time-dependent DFT in Tamm-Dancoff approximation provided the spectroscopic signatures of staggered and gauche conformations of trisphthalocyaninates. Altogether, it allowed us to demonstrate that the butoxy-substituted complex behaves as a molecular switcher with controllable conformational state, while the crown-substituted triple-decker complex maintains a staggered conformation regardless of external factors. The analysis of noncovalent interactions within the reduced density gradient approach allowed to shed light on the nature of factors stabilizing certain conformers.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Ligantes , Oxirredução , Solventes , Térbio/química , Ítrio
16.
Dalton Trans ; 51(39): 14858-14864, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125074

RESUMO

A terbium-based metal-organic framework, namely {[Tb2(ADIP)(H2ADIP)(HCOOH)(H2O)2]·2DMF·2H2O}n (Tb-MOF, H4ADIP = 5,5'-(anthracene-9,10-diyl) diisophthalic acid), was synthesized and characterized. The single-crystal structure analysis shows that the Tb-MOF crystallizes in the C2/C space group in the monoclinic system and its asymmetric unit contains two TbIII ions, one ADIP4-, one H2ADIP2-, one coordinating formic acid and two coordination water molecules. Tb-MOF has a three-dimensional porous structure with a porosity of 41.5%. Tb-MOF is a highly selective and sensitive fluorescence turn-on and blue-shift sensor for L-aspartate (Asp), L-glutamine (Glu), Al3+ and Ga3+with detection limits of 0.25, 0.23, 0.069 and 0.079 µM, respectively. Experimental studies and theoretical calculations show that the sensing process is mainly attributed to the energy transfer and the absorbance caused enhancement (ACE) mechanism. Therefore, Tb-MOF is a good multi-response fluorescence sensor for acidic amino acids and Al3+, Ga3+cations.


Assuntos
Estruturas Metalorgânicas , Térbio , Aminoácidos Acídicos , Antracenos , Ácido Aspártico , Cátions , Formiatos , Glutamina , Estruturas Metalorgânicas/química , Térbio/química , Água
17.
Photochem Photobiol Sci ; 21(11): 2011-2034, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35932374

RESUMO

Six green glowing terbium (III) complexes were fabricated via grinding method utilizing a prime organic ligand (L) and nitrogen donor ancillary ligands. Characterization of synthesized complexes was accomplished through various spectroscopic techniques. The significant thermal stability was determined by thermogravimetric analysis while the energy bandgap and Urbach energy were investigated through diffused reflectance spectra of these complexes. The peak observed at 548 nm in emission spectra is responsible for the virescent color of these complexes. Color purity, decay time, quantum yield, and emission intensities of ternary complexes were significantly improved as compared to binary ones due to the synergistic effect of ancillary ligands. Judd-Ofelt parameters were determined by the NIR absorption spectrum, which claims the asymmetric environment around the terbium (III) ion. CCT values advocate the applicability of these complexes in green light-emitting materials as a cool light source. The biological assignments reveal the significance of these complexes as potent antioxidants and antimicrobial agents. The energy transfer process highlights the enhancement of luminescence in these complexes via the synergic effect of ligands. Our investigation portrays that these complexes can be employed in laser technology, display devices, semiconductors, biological fields, and optoelectronic devices.


Assuntos
Anti-Infecciosos , Térbio , Térbio/química , Ligantes , Nitrogênio , Luminescência
18.
J Phys Chem B ; 126(30): 5678-5688, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35878998

RESUMO

The influence of the number of oxidized terbium nanoparticles on the intensity of physicochemical processes occurring during optical breakdown in aqueous colloidal solutions of nanoparticles has been studied. It is shown that the effect of the number of oxidized terbium nanoparticles on the physicochemical processes occurring during optical breakdown depends significantly on the fluence of laser radiation. At a fluence of less than 100-110 J/cm2, plasma formation processes occur more intensively on less-oxidized (metal) nanoparticles. At a fluence of more than 100-110 J/cm2, the processes of plasma formation during optical breakdown occur much more intensively on more-oxidized nanoparticles. It has been established that the dependence of the rate of laser-induced decomposition of water on the concentration of nanoparticles is two-phase. The rate of generation of water decomposition products increases with an increase in the concentration of nanoparticles up to 109 NP/mL. With a further increase in the concentration of nanoparticles, the rate of generation of water decomposition products decreases. In this case, more than 99% of the decomposition products of water are formed due to the action of plasma, and the share of ultraviolet and ultrasound formed during optical breakdown is approximately 0.5% on each.


Assuntos
Nanopartículas , Térbio , Lasers , Nanopartículas/química , Oxirredução , Térbio/química , Água/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121240, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429864

RESUMO

The layered rare earth hydroxides have attracted increasing interests due to their diverse chemical composition and tunable spectroscopic properties. In this paper, a novel Tb3+ activated layered lutetium hydroxide (LLuH:Tb) was fabricated, in which the inorganic NO3- ions were ion-exchanged with organic (ibuprofen or dodecylsulfonate) anions. After the ion-exchange reaction, the organic anions intercalated LLuH:Tb showed the distinct lamellar structure with the interlayer distance of about 2.56 nm, confirming the formation of inorganic/organic hybrid assembly. The dye ibuprofen-intercalated hybrid effectively promoted the characteristic 5D4 â†’ 7F5 green emission of Tb3+ in the host but failed to be exfoliated into nanosheet colloid. On the contrary, the dodecylsulfonate-intercalated hybrid was readily to be exfoliated into nanosheet colloid by dissolving in formamide solvent, but the green emission of Tb3+ was too weak to be observed. To take advantage of their respective merits and explore the practical uses, certain amounts of dye ibuprofen were directly added to the dodecylsulfonate-intercalated hybrid colloid. Excited with the ultraviolet light, the characteristic green fluorescence of Tb3+ was dramatically enhanced, indicating that the dye was a superior light-harvesting antenna to sensitize the activator Tb3+. The dye sensitized hybrid colloid was very stable at ambient temperature and exhibited excellent fluorescent recognition for Cu2+ ions over other metal ions in aqueous solution due to the large fluorescence quenching. The detection limit for Cu2+ ion reaches 7.63 × 10-7 mol/L, which is far lower than the limitation of Cu2+ in drinking water recommended by the World Health Organization (1.57 × 10-5 mol/L). The fluorescence enhanced/quenched sensor with excellent stability exhibits a high potential for the detection of Cu2+ in routine environmental water.


Assuntos
Lutécio , Térbio , Corantes Fluorescentes/química , Hidróxidos/química , Ibuprofeno , Espectrometria de Fluorescência , Térbio/química
20.
Appl Radiat Isot ; 184: 110175, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344829

RESUMO

155Tb [t1/2 = 5.32 d, Eγ = 87 keV (32%); 105 keV (25%) (IAEA, 2021)] is a novel promising radionuclide for theranostic applications in nuclear medicine. Its physical properties make it suitable for single photon emission computed tomography (SPECT) imaging, while its chemistry allows it to be used as a diagnostic partner for therapeutic radiolanthanides or pseudo-radiolanthanides, such as 177Lu and 90Y. Moreover, 155Tb could be used as a precise diagnostic match for the ß--emitter 161Tb, opening doors for the true theranostics concept. The availability of 155Tb in quantity and quality suitable for medical applications is an open issue and its production with medical cyclotrons via the 155Gd(p,n)155Tb and 156Gd(p,2n)155Tb nuclear reactions represents a possible but challenging solution. For this purpose, an accurate knowledge of the production cross sections is mandatory. In this paper, we report on the measurement of the production cross sections of 155Tb and other terbium radionuclides formed by proton irradiation of natGd2O3, 155Gd2O3 and 156Gd2O3 enriched targets, performed at the Bern University Hospital cyclotron laboratory. On the basis of the obtained results, the production yield and purity were calculated to assess the optimal irradiation conditions. The results of several production tests are also presented.


Assuntos
Ciclotrons , Térbio , Humanos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Térbio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA